您好,歡迎來到易龍商務(wù)網(wǎng)!
發(fā)布時間:2021-08-17 14:56  
【廣告】





人工智能控制器
但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實際應(yīng)用的例子(學(xué)術(shù)研究組實現(xiàn)少,工業(yè)運用的就更少了),大多數(shù)研究只給出了理論或結(jié)果,因此,常規(guī)控制器在將來仍要使用相當(dāng)長一段時間。為此,本文論述了人工智能在電氣傳動領(lǐng)域中的應(yīng)用。將PID控制和模糊控制相結(jié)合,控制直流電動機.首先對直流電動 機的PID控制進行,鑒于其參數(shù)變化范圍大,整定過程繁鎖
人工智能一直都處于計算機技術(shù)的前沿,經(jīng)歷了幾起幾落,長久以來,人工智能對于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻才智,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器
不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。這樣的分類就能得到較好的總體理解,也有利于控制策略的統(tǒng)一開發(fā)。這些AI函數(shù)近似器比常規(guī)的函數(shù)估計器具有更多的優(yōu)勢,它們的設(shè)計不需要控制對象的模型(在許多場合,很難得到實際控制對象的動態(tài)方程,實際控制對象的模型在控制器設(shè)計時往往有很多不確實性因素,例如:參數(shù)變化,非線性時,往往不知道)。
在各種出版物中,介紹了許多被模糊化的控制器,但這應(yīng)與“充分模糊”控制器完全區(qū)分開來,“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實現(xiàn),往往通過改造現(xiàn)有古典控制器得以實現(xiàn),如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數(shù),從而使系統(tǒng)的性能得到提高