您好,歡迎來到易龍商務(wù)網(wǎng)!
發(fā)布時間:2021-09-04 03:05  
【廣告】





人工智能控制器
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫和隸屬函數(shù)在模糊化和反模糊化過程中能夠自動地實時確定。有很多方法來實現(xiàn)這個過程,但主要的目標(biāo)是使用系統(tǒng)技術(shù)實現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速。模糊邏輯控制應(yīng)用 主要有兩類模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調(diào)速控制系統(tǒng)中。
誤差反向傳播技術(shù)是多層前聵ANN常用的學(xué)習(xí)技術(shù)。如果網(wǎng)絡(luò)有足夠多的隱藏層和隱藏結(jié)點以及適宜的激勵函數(shù),多層ANN只能實現(xiàn)需要的映射,沒有直接的技術(shù)選擇優(yōu)隱藏層、結(jié)點數(shù)和激勵函數(shù),通常用嘗試法解決這個問題,反向傳播訓(xùn)練算法是基本的快下降法,輸出結(jié)點的誤差反饋回網(wǎng)絡(luò),用于權(quán)重調(diào)整,搜索優(yōu)。
使用常規(guī)反向轉(zhuǎn)波算法的ANN用于步進(jìn)電機(jī)控制算法的優(yōu)化。該方案使用實驗數(shù)據(jù),根據(jù)負(fù)載轉(zhuǎn)矩和初始速度來確定大可觀測速度增量。這就需要ANN學(xué)習(xí)三維圖形映射。該系統(tǒng)與常規(guī)控制算法(梯形控制法)相比具有更好的性能,并且大大減少了定位時間,對負(fù)載轉(zhuǎn)矩的大范圍變化和非初始速度也有滿意的控制效果。